
Scheduling Earth Observing Fleets Using Evolutionary Algorithms:
Problem Description and Approach

Al Globus, James Crawford, Jason Lohn and Anna Pryor

March 6, 2003

1 Abstract

We hypothesize that evolutionary algorithms can effec-
tively schedule coordinated fleets of Earth observing
satellites. The constraints are complex and the bottlenecks
are not well understood, a condition where evolutionary
algorithms are often effective. This is, in part, because
evolutionary algorithms require only that one can repre-
sent solutions, modify solutions, and evaluate solution fit-
ness.

To test the hypothesis we have developed a represen-
tative set of problems, optimization software (in Java) to
solve them, and run experiments. This paper presents ini-
tial results including a comparison of separate vs. inte-
grated scheduling of a two satellite constellation and a
comparison of several evolutionary and other optimiza-
tion techniques; namely genetic algorithms, simulated an-
nealing, squeaky wheel optimization, and stochastic hill
climbing.

2 Introduction

A growing fleet of NASA, commercial, and foreign Earth
observing satellites (EOS) uses a variety of sensing tech-
nologies for scientific, mapping, defense and commercial
activities. As the number of satellites (now around 60)
increases, the system as a whole will begin to approxi-
mate a sensor web. Image collection for these satellites
is planned and scheduled by a variety of techniques (Mu-
raoka et al. 1998, Potter and Gasch 1998, Sherwood et
al. 1998, and others), but nearly always as separate satel-
lites or even instruments, not as an integrated sensor web.
Since activities on different satellites or even different in-

struments on the same satellite are typically scheduled in-
dependently of one another, the manual coordination of
observations by communicating teams of mission plan-
ners is required. As sensor webs with large numbers of
satellites and observation requests develop, manual coor-
dination will no longer be possible. Schedulers that treat
the entire web as a collection of resources will become
necessary. There has been some work toward automatic
scheduling of satellite fleets, e.g., Rao, et al. reported
scheduling ground station use, but not imaging activity,
for a fleet of seven Indian Earth imaging satellites (Rao et
al. 1998), and we present our initial results here.

Scheduling EOS is complicated by a number of impor-
tant constraints. Potin (Potin 1998) lists some of these
constraints as:

1. Power and thermal availability.

2. Limited imaging segments per orbit.

3. Time required to take each image.

4. Limited on-board data storage.

5. Transition time between look angles (slewing).

6. Revisit limitations.

7. Cloud cover.

8. Stereo pair acquisition.

9. Ground station availability, especially playback op-
portunities.

10. Coordination of multiple satellites.
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For further detail on the EOS scheduling problem see
Sherwood et al. 1998 and Frank et al. 2002.

We hypothesize that evolutionary algorithms can effec-
tively schedule Earth imaging satellites, both single satel-
lites and cooperating fleets. The constraints on such fleets
are complex and the bottlenecks are not always well un-
derstood, a condition where evolutionary algorithms are
often more effective than traditional techniques. Tradi-
tional techniques often require a detailed understanding
of the bottlenecks, whereas evolutionary programming re-
quires only that one can represent solutions, modify so-
lutions, and evaluate solution fitness, not actually under-
stand how to reason about the problem or which direction
to modify solutions (no gradient information is required,
although it can be used).

To test the hypothesis we have developed a (hopefully)
representative set of problems and software to compare
solutions generated by various evolutionary and other op-
timization techniques. We also present data comparing
scheduling a two satellite constellation as a (small) sensor
web vs. as separate systems.

The next section describes the model problems. This
is followed by a description of the optimization technique
comparison software, the results, and future plans. Fur-
ther details on the model problems and software, includ-
ing parallelization techniques, may be found in (Globus et
al. 2002).

3 Model Problems

Since our project is designed to consider the scheduling
of a parameterizable generic system, not any particular
spacecraft, sensor, or sensor web, it is important to de-
velop a set of model problems that exhibit the important
aspects of EOS scheduling now and in the future. We
have attempted to base our model sensors and satellites
on hardware currently in orbit. We have identified and
begun to scope seven problems:

1. A single satellite with a single cross-track slewable
instrument.

2. A two satellite constellation with identical satellites
from problem one.

3. A single agile satellite with one instrument. Here
the whole spacecraft is slewed, rather than the instru-
ment relative to the spacecraft. This allows slewing
both cross-track and along-track.

4. A single satellite with multiple instruments (one of
which is slewable).

5. A sensor web of single- and multiple-instrument
satellites communicating directly with the ground.

6. A sensor web of single-instrument agile satellites
communicating with an in-orbit communications
system based on high-data-rate lasers.

7. A sensor web with a very large number of satellites
including satellites with multiple instruments. This
problem presumes much cheaper and more reliable
launch.

Problems 1 and 2 have been implemented. The Results
section compares a number of search techniques against
problem 2 with the following characteristics

1. one week of satellite operations.

2. two satellites in sun synchronous orbit one minute
apart.

3. each satellite had the same single instrument.

4. instruments could slew up to 48 degrees cross-track
in either direction at a rate of 50 seconds/degree.

5. 4200 imaging targets (takeImages) were randomly
distributed around the globe; 123 of these never
came into view of either satellite.

6. each takeImage requires 24 seconds of viewing.

7. each takeImage had a priority between 1 and 5
(higher priority is more important).

8. each run (a combination of a particular search tech-
nique and transmission operators) was repeated 94
times (94 jobs).

9. 100,000 schedules were produced and scored for fit-
ness by each job.
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4 EOS Scheduling by Evolutionary
Algorithms and Other Optimiza-
tion Techniques

There are a number of optimization (evolutionary and oth-
erwise) algorithms in the literature. We compare a genetic
algorithm (GA), simulated annealing (SA), and stochastic
hill climbing (HC) to address EOS scheduling. In addi-
tion, we compare random and squeaky wheel (SW) trans-
mission operators. Note that although these techniques
can be thought of as evolutionary algorithms, not all prac-
titioners would classify them this way.

GAs seek to mimic natural evolution’s ability to pro-
duce highly functional objects. Natural evolution pro-
duces organisms, whereas GAs can produce schedules,
programs, molecular designs, and many other structures.
Our GA employs the following algorithm:

1. Represent each schedule with a permutation (order-
ing) of the imaging tasks (explained below)

2. Generate a population of random permutations

3. Calculate the fitness of each permutation

4. Repeat

(a) Randomly select parent permutations with a
bias towards better fitness

(b) Produce child permutations from the parents
with a transmission operator:

i. crossover that combines parts of two par-
ents into a child, or

ii. mutation that modifies a single parent

(c) Calculate the fitness of the child

(d) Randomly replace individuals of less fitness in
the population with the children

5. Until satisfied according to some minimal conver-
gence criteria

In this paper we compare three search algorithms:

1. GA (the genetic algorithm described above)

2. HC (stochastic hill climbing) can be thought of as
a genetic algorithm with a population of one where
only fitter children are allowed to replace the parent.
Two cases are investigated: five restarts per run and
no restarts.

3. SA (simulated annealing) is similar to HC except less
fit children can replaces the parent with probability
p = e

−4F
T where4F how much less fit the child is,

and the temperatureT starts at 100 and is multiplied
by 0.92 every 1000 children (100,000 children are
generated per run).

Evolution is guided by a fitness function. The fitness
function must provide a fitness for any possible permuta-
tion, no matter how bad the schedule is, and distinguish
between any two permutations, no matter how close they
are. Our fitness function is multi-objective. The objec-
tives include:

1. Maximize the sum of the priority of the images taken
(takeImages).

2. Minimize total time spent slewing (slew motors wear
out).

3. Minimize the sum of the slew angles for the images
taken (small slews improve image resolution).

These are manipulated so that lower values are better
fitness and then combined into a weighted sum.

We represent schedules as an permutation, or order-
ing, of the image requests (takeImages). A simple
greedy scheduler assigns times and resources to the re-
quested takeImages in the order indicated by the permu-
tation. This scheduler currently assigns takeImages us-
ing earliest-first scheduling heuristics; maintaining con-
sistency with sensor availability, onboard memory (SSR)
and slewing constraints. If a takeImage cannot be sched-
uled without violating constraints, it is left unscheduled
and the scheduler attempts to schedule the next takeIm-
age in the permutation. Simple earliest-first scheduling
had some problems, and we discovered that the algorithm
works better if ’earliest-first’ starts with a particular imag-
ing window (period where the satellite is within sight of
a target; most takeImages have several windows in our
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week-long problem) rather than epoch (time = 0); wrap-
ping around if the takeImage cannot be scheduled be-
fore the end of time. The takeImages’s scheduled imag-
ing window is remembered and used by children when
they generate schedules. This approach may work better
than true earliest-first because of the additional schedul-
ing flexibility provided by the window information.

Constraints are enforced by representing each resource
as a timeline. Each timeline then takes on appropriate
values (i.e., in use for a sensor, slew motor setting, SSR
memory available) at different times. A takeImage is in-
serted at the first time examined and available in all the
required resource timelines.

Evolution requires mutation and crossover operators to
create children from parents. This paper compares four
mutation operators and one crossover operator. The mu-
tation operators are:

1. Random swap. Two permutation locations are cho-
sen at random and the takeImages swapped. Swaps
are executedn times per mutation. A single random
swap is called order-based mutation (Syswerda and
Palmucci 1991).

2. Squeaky swap. This is the same as random swap ex-
cept that the takeImages to swap are chosen more
carefully. Specifically, a tournament of sizen se-
lects both takeImages. One takeImage that ’should’
be moved forward in the permutation is chosen. The
winning takeImage is (in this order):

(a) unscheduled rather than scheduled

(b) higher priority

(c) later in the permutation

The other takeImage is chosen assuming it should
be moved back in the permutation. This tourna-
ment winner has the opposite characteristics. Al-
though the takeImages to swap are chosen because
one ’should’ move forward in the permutation and
the other ’should’ move back, this is not enforced.
Experiment determined that the desired direction of
the swap did not actually occur nearly as much as
expected, sometimes less than half the time!

3. Placed squeaky swap. Here the direction is enforced.
A separate tournament is conducted for each takeIm-
age. The takeImage to move forward is forced to be

in the last half of the permutation. The takeImage
to move back is then forced to be at least half way
towards the front.

4. Cut and rearrange. The permutation is cut inton
pieces and these are put back together in a random
order. This is similar to the cut-set based operators
used in the traveling salesman problem community.

The crossover operator is only used in the genetic algo-
rithm. The operator is Syswerda and Palmucci’s position-
based crossover (Syswerda and Palmucci 1991). N per-
mutation positions are chosen. These are copied from the
father to the child. The remaining task numbers fill in the
other positions in the order they appear in the mother.

In many runs, several different transmission operators
were used. In these cases, each child was produced by a
randomly chosen transmission operator.

5 Results

A comparison of search techniques and transmission op-
erators (various forms of mutation and crossover) can be
found in table 5. The techniques at the top of the table
produce the best schedules, the techniques at the bottom
the worst. A few observations:

1. Simulated annealing is clearly the best search tech-
nique.

2. Random swap mutations beat the smarter ’squeaky’
mutation where the tasks to swap are chosen more
carefully (a counter intuitive result).

3. Multiple swaps are better than a single swap, proba-
bly because some moves are impossible with a single
swap.

4. Ordering techniques by priority or takeImage rather
than fitness doesn’t make any difference for the best
techniques, and much of the difference that does oc-
cur is not statistically significant.

These observations should not, however, be considered
definitive. First of all, this is a single problem and re-
sults may vary when the full range of the model problems
are addressed. Second, the squeaky algorithms can stand
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search algorithm transmission operators fitness priority takeImage
SA 1-9 swap 2171 1873 1199
SA 1 swap 2354 2077 1295

HC 5 restarts 1-9 swaps 2539 2287 1415
HC 5 restarts 1 swap 2564 2313 1429
HC 0 restarts 1 swap 2575 2327 1436

SA 1 squeaky swap 2772 2527 1615
SA 1 placed squeaky swap 2814 2559 1579
HC 1 squeaky swap 2868 2625 1623

GA population = 100 crossover and 1 swap 3007 2759 1558
GA population = 100 1-5 cut and rearranges 3008 2754 1526

SA 1-5 cut and rearranges 3012 2737 1439

Table 1: Comparison of search techniques. Search-technique/transmission operator pairs ordered by mean fitness.
Techniques are ordered by fitness (low values are better schedules for all measures). Priority is the sum of the priority
of all unscheduled tasks. TakeImage is the number of unscheduled takeImages. All data are the mean of 94 searches.
Values are rounded of to the next lowest whole number. All differences are statistically significant (as measured by
Student’s T-Test) except for fitness: HC with 0 and 5 restarts with 1 swap, and the worst three; priority: only the worst
three; and several of the takeImage comparisons.

improvement and may someday outperform the random
operators. Nonetheless, if these results stand up, there are
some important implications.

1. Simulated annealing requires less memory than the
genetic algorithm and does not require crossover op-
erators or a population, making it better performing,
more efficient, and easier to implement.

2. Random swaps out perform the ’smarter’ squeaky
swaps, making random swaps better performing,
faster, and easier to implement.

3. One should allow multiple random swaps, in spite of
the minor increase in code complexity.

Figure 1 shows the evolutionary history of the best in-
dividuals for the best schedules evolved by simulated an-
nealing (SA) , hill climbing (HC), and the genetic algo-
rithm (GA) using the one random swap mutation opera-
tor. Notice that although simulated annealing wins in the
end, it trails GA until about generation 50 and trails HC
until about generation 70. SA seems to be doing a bet-
ter job of finding and then exploiting a deep minimum.
Notice also that all three techniques are still improving
the schedule at the end of the run, suggesting that addi-
tional evolution (more than 100,000 children) would be
rewarded with better schedules.

One unexpected property of the schedules generated
was the slewing. Specifically, in order to minimize to-
tal slewing time the schedules tended to place takeImages
such that the instrument is slewed to extremes (see figure
2). This could perhaps be reduced if the fitness function
gave more weight to minimizing the sum of the slews or
if the instruments slewed faster (which would be more re-
alistic).

A second experiment compared GA with one swap op-
erator on two problems: in the first, each satellite was ran-
domly assigned half of 4,200 the takeImages; in the sec-
ond, either satellite was allowed to execute any takeIm-
age. As might be expected, the case where any satel-
lite could take any image produced superior schedules.
Specifically, the shared case was able to take about 15%
more images. The scheduler computed total slew time for
both runs, but there was no statistically significant differ-
ence even though the shared case executed more takeIm-
ages.

6 Future Work

Future work will be focused on expanding table 1 to in-
clude more problems and techniques. Specifically, we in-
tend to add:
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Figure 1: A comparison of the evolutionary history of simulated annealing, hill climbing, and the genetic algorithm.
Lower fitness values indicate better schedules.

scheduling mean unscheduled takeImagesstandard deviation
shared 2027 80

separate 2312 28

Table 2: Comparison of unscheduled takeImage for GA with single swap mutation. In the shared case, either satellite
could execute any of 4,200 takeImages. In the separate case, each satellite was randomly assigned 2,100 takeImages.
The shared case is about 15% better.

6



-50

-40

-30

-20

-10

0

10

20

30

40

50

0 50 100 150

time (hours)

sl
e
w

 (
d

e
g

re
e
s)

Figure 2: The slew history for one satellite in the best schedule generated. The horizontal axis is time; a total of
one week. The vertical axis is the amount of cross-track slew necessary to execute the scheduled takeImages for
this satellite. Note the preference for extreme slews. The extreme slews apparently minimize the total slewing time
sufficiently to overcome the fitness pressure towards small slews.
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1. additional model problems.

2. a duty cycle constraint. This constraint requires that
an instrument is not used for more thanu seconds in
anyt second time period.

3. improved squeaky operators; in particular, shifting a
high priority, unscheduled takeImage forward, rather
than swapping with a scheduled, low priority takeIm-
age.

4. a random swap operator where the number of swaps
is a probabilistic function of the number of children
that have been produced. As evolution proceeds, the
number of swaps is reduced. This encourages large
steps in the beginning of evolution and smaller re-
finement steps near the end.

5. transmission operator evolution; where transmission
operators that have done well early in evolution are
more likely to be used.

6. additional forms of local search.

7. a multi-objective co-evolution genetic algorithm JA-
SON REFERENCE HERE.

8. HBSS (Heuristic Biased Stochastic Search) with
contention based heuristics similar to Frank et al.
2002.

7 Summary

Earth imaging satellite constellation scheduling is a com-
plex task with many variables and interacting constraints.
We hypothesize that evolutionary programming can solve
the EOS scheduling problem effectively and have begun
to test various evolutionary search techniques and trans-
mission operators. To date, simulated annealing com-
bined with multiple-iteration random swap operators are
the best. We have also shown that scheduling a small fleet
as a combined resource outperforms separate scheduling
for each satellite by about 15%.
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